仅3B激活参数,更强的多模态理解与推理能力,百度文心 ERNIE-4.5-VL-28B-A3B-Thinking正式开源!
11月11日,百度开源文心ERNIE-4.5-VL-28B-A3B-Thinking多模态模型,仅3B激活参数,性能媲美顶级大模型。具备强大视觉语言理解、跨模态推理与“图像思考”等创新功能,支持工具调用与视频分析,适用于复杂图文任务,全面开放商用。
阶跃星辰发布首个开源 LLM 级音频编辑大模型 Step-Audio-EditX
阶跃星辰发布全球首个开源LLM级音频编辑大模型Step-Audio-EditX,支持零样本TTS、多语言方言及情感、风格、副语言特征精准控制,采用统一LLM框架,实现文本驱动音频创作。
Mcore Bridge:迈向Megatron训练"零门槛"时代
魔搭社区推出Mcore-Bridge与Megatron-SWIFT,显著降低大模型训练门槛。支持safetensors格式、一键启动、无需权重转换,兼容MoE等架构,实现高性能与易用性统一,让Megatron训练开箱即用。
ChatPPT+魔搭社区:MCP 2.0全面升级!
ChatPPT MCP2.0正式发布,联合魔搭ModelScope推出云端智能体服务,支持生成、编辑、演讲、动画等全链路功能,开放Streamable HTTP协议与本地Stdio双模式,已接入20+平台,服务300+开发者。
详细教程 PhpStorm 2025.1 安装+ 激活中文配置,附安装包
PhpStorm 2025.1 全新升级,深度支持 PHP 8.3+/8.4,强化 AI 助手、Xdebug 调试与 .env 嵌套变量,提升全栈开发效率,打造现代化 PHP 开发利器。
蚂蚁百宝箱联手深铁打造全国首个地铁 AI 智能体「深铁宝」:你的全能城市向导来啦~
蚂蚁百宝箱联合深铁集团、深圳通推出全国首个“公共出行+城市服务”AI智能体「深铁宝」,上线于深圳地铁、深圳通及支付宝APP,实现一句话直达、秒级响应的智慧出行体验,涵盖出行规划、乘车码快捷调取、周边生活服务推荐等一站式功能,助力城市交通与服务数字化升级。
如何在Java代码中处理数据库连接异常
在Java中,合理处理数据库连接异常对程序稳定性至关重要。需捕获`ClassNotFoundException`和`SQLException`等具体异常,使用`try-with-resources`自动释放资源,结合日志记录与用户友好提示,并可引入重试机制应对网络波动,提升系统容错能力。
超长序列并行之Ulysses + Ring-Attention技术原理与实现
本文介绍大模型长序列训练中的显存优化技术,重点解析Ulysses与Ring-Attention的融合方案。通过序列并行降低显存占用,结合zigzag切分与padding_free适配,实现高效多模态训练,在3B模型上显存从75GB降至18GB,显著提升长序列训练可行性。
嵌入式开发必备!Keil uVision5 C51 V9.61 安装激活 + 汉化完整教程, 含(Keil MDK 5.39)
Keil C51 V9.61是一款专用于8051系列单片机的集成开发环境,支持主流厂商芯片,集编辑、编译、仿真于一体,基于μVision5平台,操作便捷。提供C编译器、汇编器、调试器等全套工具,适用于嵌入式开发。附带安装与激活教程,可实现汉化界面,提升使用体验。(237字)
Soul App联合西工大和上交大开源语音合成模型SoulX-Podcast,已登顶Hugging Face TTS趋势榜!
Soul AI Lab联合西工大、上交大开源SoulX-Podcast,支持中英粤川等多语种方言及副语言生成,可稳定输出超60分钟自然流畅的多人对话音频,已在Huggingface登顶TTS趋势榜。
Thinking Machines Lab最新研究结果如何复现?On-Policy Distillation让训练成本直降10倍
Thinking Machines Lab提出On-Policy Distillation技术,让小模型高效继承大模型能力。相比传统强化学习,训练成本降低90%,效率提升十倍,支持本地部署、降低成本与延迟。结合vLLM加速与独立DeepSpeed配置,MS-SWIFT框架实现开箱即用的高效蒸馏训练,助力轻量模型具备“会思考、能纠错、可进化”的智能。
UI-Ins:让 GUI 智能体真正“看懂”用户指令的新范式
通义实验室联合人大发布全新GUI Grounding模型UI-Ins,首创“指令即推理”范式,通过多视角动态推理实现SOTA性能,在五大基准全面领先,支持开源复现与应用。
全新框架 Glyph 开源:用视觉理解文本,3–4 倍上下文压缩,近 5 倍推理提速!
清华CoAI与智谱AI提出Glyph新范式,将长文本渲染为图像,通过视觉语言模型实现高效长上下文处理。3-4倍压缩比,性能媲美主流大模型,显存占用降2/3,低成本支持百万token任务,开源可商用。
腾讯混元世界模型1.1开源:支持多视图及视频输入,单卡部署,秒级生成_魔搭ModelScope社区-ModelScope魔搭社区
混元世界模型1.1(WorldMirror)发布,支持多视图、视频输入,单卡秒级生成3D场景。兼容CG管线,开源可部署,实现点云、深度、相机等多任务统一预测,性能领先。
「超级开发个体」在诞生:一份白皮书带你理解AI时代开发者
10月24日程序员节,魔搭社区联合知乎发布《THE NEXT WAVE:AI时代开发者生态白皮书》,揭示AI时代开发者新画像:以“超级个体”为核心,兼具技术与商业闭环能力,工具平权让个人开发者崛起。报告涵盖年龄、学历、组织分布及认知行为特征,展现开发者如何用AI提效、实现从“写代码”到“搭系统”的跃迁。点击下载完整报告。
【AI绘画】你有多久没有打开SD了?
曾几何时,Stable Diffusion的复杂参数令人崩溃,如今即梦、可灵等AI工具已让生成图片变得轻而易举。哩布哩布发布2.0升级公告,看似迈向更易用的未来,却也悄然为那个钻研模型、拼接工作流的“拓荒时代”奏响终章。技术迭代飞快,但那份对创造的热爱与探索精神,永不褪色。
Face-to-Photo 模型开源!联名麦橘MERJIC,遇见另一个你!
魔搭 DiffSynth-Studio 团队携手知名创作者麦橘MERJIC,正式开源全新 AI 图像生成模型——Face-to-Photo!该模型基于 Qwen-Image-Edit,采用 LoRA 的模型结构,专为人脸图像生成而优化,将一张普通的人脸照片转化…
ModelScope魔搭社区发布月报 -- 25年10月
2025年10月,ModelScope密集发布多模态与大模型更新,并上线国际站、科学智能专区及AIGC工具FlowBench,加速开源生态发展。
Spring Boot中Spring Data JPA的常用注解
Spring Data JPA通过注解简化数据库操作,实现实体与表的映射。常用注解包括:`@Entity`、`@Table`定义表结构;`@Id`、`@GeneratedValue`配置主键策略;`@Column`、`@Transient`控制字段映射;`@OneToOne`、`@OneToMany`等处理关联关系;`@Enumerated`、`@NamedQuery`支持枚举与命名查询。合理使用可提升开发效率与代码可维护性。(238字)
用Macbook微调Qwen3!手把手教你用微调给Qwen起一个新名字
本文介绍如何在MacBook上使用苹果MLX框架高效微调Qwen3大模型。借助MLX的高性能计算与统一内存架构,仅需2分钟即可完成训练,内存占用低至2GB,推理速度达400 Token/s,并支持快速部署为本地API服务,展现Mac轻薄本的强大AI生产力潜力。
图像理解与生成统一模型——前沿模型架构理解
前言生成式多模态模型近年来一直是业界的研究热点。视觉语言模型(VLM)一直是多模态文本生成领域的核心路线,能够完成图像理解任务;扩散模型(Diffusion Model)则一直是图像和视频生成领域的核心方法。
Ling-1T,智渊、思简
今天,我们正式发布Ling 2.0系列的第一款 旗舰非思考模型 - 拥有万亿参数的Ling-1T。推理,是智能的核心表达,更是通用智能体的认知基石。因此,我们持续扩展Ling 2.0 系列模型的自然语言推理能力。Ling-1T沿用 Li…
智谱旗舰模型GLM-4.6开源发布,代码能力对齐Claude Sonnet 4
作为GLM系列的最新版本,GLM-4.6是系列最强的代码Coding模型(较GLM-4.5提升27%)
106_模型合并:Task Arithmetic
在大语言模型(LLM)时代,模型合并技术正在成为高效整合不同模型能力的关键方法。随着开源模型的爆发式增长,如何在不进行昂贵的重新训练的情况下,将多个专用模型的知识整合到一个统一模型中,成为了研究和工业界的重要课题。Task Arithmetic作为一种新兴的模型合并方法,通过向量操作实现权重融合,为这一挑战提供了创新解决方案。
142_故障容错:冗余与回滚机制 - 配置多副本的独特健康检查
在大语言模型(LLM)的生产环境部署中,系统的可靠性和稳定性至关重要。随着LLM应用场景的不断扩展,从简单的文本生成到复杂的多模态交互,用户对服务可用性和响应质量的要求也日益提高。据2025年最新的AI服务可用性报告显示,顶级AI服务提供商的SLA(服务级别协议)承诺已达到99.99%,这意味着每年的计划外停机时间不得超过52.56分钟。
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。